Hertentamen II, 22 August 2006

voir riet partiering

Neural Networks

The problems are to be solved within 3 hrs. The use of supporting material (books, notes, calculators) is not allowed. In each of the four problems you can achieve up to 2.5 points, with a total maximum of 10 points.

1. Perceptron storage problem

Consider a set of data $ID = (\xi^{\mu}, S^{\mu})_{\mu=1}^{P}$ where $\xi^{\mu} \in \mathbb{R}^{N}$ and $S^{\mu} \in \{+1, -1\}$. In this problem, we assume that ID is homogeneously linearly separable.

- a) Formulate the perceptron storage problem as the search for a vector $\mathbf{w} \in \mathbb{R}^N$ which satisfies a set of equations. Re-write the problem using a set of inequalities.
- b) Define the stability $\kappa(\mathbf{w})$ of a perceptron solution \mathbf{w} with respect to a given set of data ID. Give a geometric interpretation (sketch an illustration) and explain (in words) why $\kappa(\mathbf{w})$ quantifies the stability of the outputs with respect to noise.
- c) Assume we have found two different solutions $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$ of the perceptron storage problem for ID. Assume furthermore that $\mathbf{w}^{(1)}$ can be written as a linear combination

$$\mathbf{w}^{(1)} = \sum_{\mu=1}^{P} x^{\mu} \, \boldsymbol{\xi}^{\mu} \, S^{\mu} \quad \text{with} \quad x^{\mu} \in \mathbb{R}^{N}$$

whereas the difference $(\mathbf{w}^{(2)} - \mathbf{w}^{(1)})$ is orthogonal to all the $\boldsymbol{\xi}^{\mu}$ in $I\!\!D$, i.e. $(\mathbf{w}^{(2)} - \mathbf{w}^{(1)}) \cdot \boldsymbol{\xi}^{\mu} = 0$ for $\mu = 1, 2, \dots P$.

Show that $\kappa(\mathbf{w}^{(1)}) > \kappa(\mathbf{w}^{(2)})$. What does the result imply for the perceptron of optimal stability \mathbf{w}_{max} ?

2. Learning a linearly separable rule

Here we consider perceptron training from linearly separable data $\mathbb{D} = \{\boldsymbol{\xi}^{\mu}, S_{R}^{\mu}\}_{\mu=1}^{P}$ where noise-free labels $S_{R}^{\mu} = \text{sign}[\mathbf{w}^{\star} \cdot \boldsymbol{\xi}^{\mu}]$ are provided by a teacher vector $\mathbf{w}^{\star} \in \mathbb{R}^{N}$ with $|\mathbf{w}^{\star}| = 1$. Assume that by some training process we have obtained a perceptron vector $\mathbf{w} \in \mathbb{R}^{N}$ from the data \mathbb{D} .

- a) Define the terms training error and generalization error in the context of this situation.
- b) Assume that random input vectors $\boldsymbol{\xi} \in \mathbb{R}^N$ are generated with equal probability anywhere on the hypersphere with squared radius $\boldsymbol{\xi}^2 = 1$. Given \mathbf{w}^* and a vector $\mathbf{w} \in \mathbb{R}^N$, what is the probability for disagreement, sign $[\mathbf{w} \cdot \boldsymbol{\xi}] \neq \text{sign}[\mathbf{w}^* \cdot \boldsymbol{\xi}]$? You can "derive" the result from a sketch of the situation in N = 2 dimensions.
- c) Explain Rosenblatt's perceptron algorithm for a given set of examples *ID* in terms of a few lines of *pseudocode*.

3. Classification with multilayer networks

- a) Consider the so-called *committee machine* with inputs $\boldsymbol{\xi} \in \mathbb{R}^N$, K hidden units $(\{\sigma_k = \pm 1\}_{k=1}^K)$, and corresponding weight vectors $\mathbf{w}_k \in \mathbb{R}^N$. Define the output $S(\boldsymbol{\xi}) \in \{-1, +1\}$ as a function of the input.
- b) Now consider the parity machine with N-dim. input and K hidden units. Define the output $S(\xi) \in \{-1, +1\}$ as a function of the input.
- c) Illustrate the case K=3 for parity and committee machine in terms of a geometric interpretation. Why would you expect that the parity machine should have a greater storage capacity in terms of implementing random sets $\mathbb{D} = \{\xi^{\mu}, S(\xi^{\mu})\}$?

4. Regression

a) Explain the term overfitting in the context of a simple regression problem. What is the meaning of bias and variance in this context?

Bonus problem Cup to 1 pt.)

- b) The choice of the appropriate network complexity (size, architecture) is a key problem in learning. Explain how the method of n-fold cross validation can be used in this context. You may discuss it in terms of the same example as in (a).
- c) Consider a feed-forward continuous neural network (N-2-1 architecture) with output

$$\sigma(\boldsymbol{\xi}) = \sum_{j=1}^{2} v_{j} g(\mathbf{w}_{j} \cdot \boldsymbol{\xi}).$$

Here, $\boldsymbol{\xi} \in \mathbb{R}^N$ denotes an input vector, $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^N$ are the adaptive weight vectors in the first layer and $v_1, v_2 \in \mathbb{R}$ are the adaptive hidden-to-output weights. Assume the transfer function g(x) has the known derivative g'(x).

Given a single training example $\{\xi^{\mu}, \tau^{\mu}\}$ with input ξ^{μ} and output $\tau^{\mu} \in \mathbb{R}$ consider the quadratic error measure

$$\varepsilon^{\mu} = \frac{1}{2} \left(\sigma(\xi^{\mu}) - \tau^{\mu} \right)^{2}.$$

Write down a gradient descent step for all adaptive weight with respect to the (single example) cost function ε^{μ} .